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Abstract-The growth and stability of thermally induced equally spaced parallel cracks in a half-plane
consisting of a homogeneous isotropic linearly elastic brittle material are studied. At the initial time, the
uniform temperature of the half-plane is reduced at its surface by a large increment, To, and then kept
cOlIStant (at the surface). Because of heat conduction and possible heat convection due to fluid flow, a
temperature gradient forms close to the surface and penetrates into the half-plane. Thermal contraction
results in the formation of cracks perpendicular to the free surface. It is shown that if the cracks are
initially parallel and equally spaced, and if the possibility of branching is excluded, then they grow in time
until a critical state is reached. At this state alternate cracks stop growing, while the others begin to grow at
a much faster rate. This process continues until another critical state is attained, where the cracks which
had stopped growing (together with some other cracks, depending on the temperature profile), suddenly
close. while the cracks which have continued growing, suddenly "snap" into a finitely longer length. At this
state the crack spacing is doubled (or quadrupled, depending on the temperature profile). The whole process
then repeats itself. Applications to geothermal energy extraction from hot dry rock masses is mentioned.

I. INTRODUCTION

In recent years there has been a fair amount of activity in the United States to extract heat
energy from hot, dry, impermeable rock masses that exist at relatively shallow depths in
mountains in New Mexico; see Smith et al. [1]. The basic idea is to induce by hydraulic
fracturing a large vertical crack (about, say, a kilometer in diameter) several kilometers below
ground surface, and to circulate water down and through the fracture zone and back up to
ground surface. In an ideal situation the fracture occurs perpendicular to the smallest principal
stress. At the depths and for the location mentioned above, the overburden pressure is
considerably larger than the two principal horizontal tectonic stresses, resulting in the forma­
tion of a fracture perpendicular to the smallest horizontal principal stress. The local anisotropy
and inhomogeneity can considerably influence the final crack orientation. As the rock is cooled
by the circulating water, thermally induced secondary cracks may form perpendicular to the
face of the primary crack. Since the horizontal principal stress is considerably smaller than the
overburden stress, the secondary cracks will probably assume vertically elongated hexagonal
shapes. In the limiting case, when the overburden pressure is suitably large, the secondary
cracks may constitute a system of vertical parallel cracks. Since the elastic energy stored in the
rock by thermal contraction is finite, there will be a finite number of cracks per unit length in
the x-direction (see Fig. Ie) with a calculable minimum average crack spacing at the initial
stage. As the -rock is further cooled, the secondary cracks will penetrate deeper into the rock.
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Fig. I. (a) Temperature profile eqn (2.1); (b) Temperature profile eqn (2.2); (c) Half-plane with equally
spaced cracks.

tPermanent address: Department of Mathematics, Indian Institute of Technology, Bombay-400076, India.
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An important question is whether these cracks continue to grow or whether some cracks will
stop or even close in favor of other cracks, resulting in larger crack spacing; in other words, is
the mechanism of equal crack growth a stable process? In the present case the problem is
considerably complicated because of the circulation of water through the secondary cracks,
which results in a non-uniform temperature distribution in the water. Convective currents are
hence set up which in turn, because of the mixing process, change the temperature at the
boundary of the solid in the secondary cracks.

In an effort to understand the mechanism and the stability of thermally induced crack
growth in brittle elastic solids, we drastically simplify the preceding problem, and consider a
homogeneous and isotropic elastic half-space, initially at the uniform temperature To, whose
free surface is then brought to a temperature Ts (which we set equal to zero), and kept constant
thereafter. We shall further assume that the half-space is initially subjected to a uniform
compression in one direction parallel to its free surface in such a manner that the cracks are
initially formed perpendicular to the free surface (system of parallel cracks), and that the
temperature profile in the solid is not altered by the formation and extension of these cracks.
Moreover, to simplify the analysis further, we assume that the cracks are equally spaced.

Admittedly this is an oversimplification. However, in view of the lack of information on the
stability of crack growth, and because of the accompanying analytical difficulties, we feel that
the model will adequately bring into focus some of the delicate and nonconventional considera­
tions which are required for a proper analysis of this class of problems. In fact, because of the
existence of a number of constraints, a straightforward application of the well-developed
classical elastic stability analysis cannot be made in the present case; for a discussion of elastic
stability, see Pearson[2], Hill [3], Nemat-Nasser[4], Thompson and Hunt[5] and Roorda[6]. In
Section 2 the basic stability theory for crack growth is developed. In Section 3 the correspond­
ing thermoelasticity problem is formulated in the form of integral equations, and the basic
method of solution is outlined. Numerical examples and relevant discussion are then presented
in Section 4. Readers who are not interested in the detailed mathematical analysis which is
required for the calculation of the stress intensity factors and their derivatives with respect to
crack lengths may skip Section 3 and go directly from Section 2 to Section 4.

Finally, it should be noted that the results present in this work have immediate application
to the following and related problems:

(1) Cracks formed in thermal shields due to cooling;
(2) Shrinkage cracks in polymers due to aging and loss of moisture;
(3) Shrinkage cracks in adhesively bonded materials, such as paints, polymer films, etc.;
(4) Shrinkage cracks in drying concrete;
(5) Surface cracks in aging wood;
(6) Desiccation cracks in deserts and dried up lakes;
(7) Thermal cracks in nuclear reactor fuel elements, and swelling and thermal cracks in the

first wall of some proposed fusion reactor structures;
(8) The growth and interaction of initially star-shaped cracks in hydraulic fracturing.

2. STABILITY ANALYSIS OF CRACK GROWTH

Temperature profiles
Consider a homogeneous isotropic elastic half-space y 2: O. Assume that the initial tempera­

ture is uniform and is equal to To. Let the surface y = 0 be brought to temperature zero and be
kept zero thereafter. It is easy to verify that because of heat conduction, the temperature profile
in the solid will be given by the following error function (see Fig. tal:

T= Toerf e~3), Y 2:0, (2.1)

where erf (x) = (2/VTr)fo e-u2 du; 8 is a length scale which increases as the square root of time
and can be used as a measure of the depth in which an appreciable temperature gradient has
been formed. For the present analysis 8 will serve as a "load parameter", which we shall refer
to as the "penetration depth".
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Simple calculations which ignore the effect of convection heat transfer give the following
expression,t 8 = [tk/pC]I/2. If we use the material constants relevant to granite, for example, we
discover that 8 increases only a few meters in the span of a year. Therefore, the change in the
load parameter, 8, is so slow that a quasi-static analysis is permitted.

As the water moves through the secondary cracks, heat is transferred also by convection.
This process tends to cool the rock faster than when no convection takes place. The
temperature profile, in this case, will be considerably different from the one shown in Fig. I(a).
A possible profile which may account for the convective effect is sketched in Fig. I(b). Here it
is assumed that the temperature is reduced to zero for a distance equal to 8/(n + 1), and then
attains the value To over a distance equal to n8/(n + I), so that the total "penetration depth" is
still equal to 8. The corresponding temperature field may be approximated by the following:

T = 0 for 0 S YS 8/(n + I),

T= TO(I_COS1Ty(n+I)-8) for 8/(n+l)sys8
2 n8

T = To for 8 S y.

(2.2)

We shall use for illustration both temperature profiles (2.1) and (2.2). Basically they give
similar results. However, they lead to quantitatively different conclusions. We note, however,
that neither profile represents the actual case, although they ought to give a reasonable range
within which the actual temperature profile may fall.

Statement of problem
We shall assume that the elastic half-space is an ideal brittle material with a constant surface

energy y. Hence, a crack will extend (mode I) in this solid in such a manner that the "stress
intensity factor" at the tip of crack does not exceed and remains at the critical value Kc ; see,
for example, Knott[7]. Since we deal with a plane strain problem, we have

(2.3)

where E is Young's modulus, and p is Poisson's ratio.
If To is sufficiently large, say 100°C, then after 8 attains a suitable value, cracks will form at

the surface and penetrate into the half-space. We assume that a uniform compression is
(externally) applied normal to the x,y-plane to ensure a state of plane strain even after the
formation of cracks. Nevertheless, there is no reason to assume that the initial crack spacing is
equal or even periodic. But in order to simplify the required analysis, we shall assume a system
of parallel cracks with an initially equal crack spacing b.

As 8 increases, the crack length also increases. Excluding crack branching, we shall seek to
answer the following basic question:

Would the cracks grow with 8 at a common rate, or would some cracks grow faster or even
snap into a finitely longer length, while the remaining cracks stop growing or even snap closed,
when a certain critical state is exceeded?

In other words, is the equal crack growth regime a stable process or does this regime change
at a certain critical state, after which a different regime prevails? Moreover, if the latter is the
case, what exactly is the nature of the new crack growth regime, and to what extent is it
affected by the corresponding temperature profile?

In the sequel we shall show that as the cracks grow equally, a critical state may be reached
corresponding to a critical value of the load parameter, 8 =an after which every other crack
stops growing, while the remaining cracks grow at a faster rate. This new regime of crack
growth will persist until another critical state is reached. At this new critical state, depending on
the temperature profile, we may have the following possibilities:

(1) For temperature profile (2.1) the cracks which have stopped growing, together with

tHere k is the conductivity. p is the mass-density. C is the heat capacity of the soli~. and t measures time.
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every other crack of those which had continued to grow, snap closed, while at the same time
the remaining cracks snap into a finitely longer length: the crack spacing changes from the
initial value b to 4b after this state;

(2) For temperature profile (2.2), after the second critical state, on the other hand, only those
cracks which had stopped growing snap closed, while all the remaining cracks snap into a
slightly longer length: the crack spacing changes from the initial value b to 2b after this state.

Stability analysis; non-interacting cracks
We first note that it is the interaction between adjacent cracks which leads to the unstable

growth modes mentioned above. To show this we proceed as follows.
Assume there are no interactions between adjacent cracks. Then one can consider a "unit

cell" of width b consisting of a single crack of length h, as shown in Fig. 2(a). The stress
intensity factor is then given by

K = K(h; 8).

For this crack to grow spontaneously for a fixed value of 8, we must have

aK
K(h; 8) =Ke, dK =aJidh >0 for dh >0,

(2.4)

so that we must have aKlah > O. Although it is intuitively clear that in the present case this can
never happen, we have verified this fact in the following manner: (1) for a given value of 8 we
have calculated the value of h such that K == Ke (note b is fixedt); (2) for this value of h, we
then have calculated aKlah, which maintains a strictly negative value for all finite values of 8;
aKlah approaches zero asymptotically as 8 goes to infinity. This is shown in Fig. 3, where N is
the dimensionless stress intensity factor (see eqn 3.39), a = hlb, and A== 81b.

We therefore see that if the cracks do not interact (when the spacing is very large relative to
the common crack length), then the equal crack growth regime is strictly stable.

Stability analysis; interacting cracks
Consider a system of two interacting cracks, as denoted by I and 2 in Fig 2(b). Let the

corresponding stress intensity factors and lengths be denoted by K; and hi, i = I, 2, respec­
tively. Consider the equilibrium state

(2.5)

for a given value of 8. As 8 increases, h increases such that K; = Kc is maintained.
We ask: what are the conditions under which such an equilibrium state becomes unstable;

moreover, what is the instability mode?
To answer these questions, we may either proceed by "the method of adjacent equilibrium

state", or we may use a variational approach. In the sequel we shall apply in detail the first

~; I
h

:
I I
I I
I-b-j
I I
I I
I I

TIlT,I I

: tlj h2 :

I 1 2 I
I I
t-- 2b---1
I I
I I
I I
I I

(0) (b)

Fig. 2. (a) Atypical unit cell with one crack: noninteracting crack system: (bl Atypical unit cell with two cracks:
interacting crack system.

tFor the initial crack spacing, b has calculable minimum values: see Section 4.
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Fig. 3.
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method, and then briefly discuss an energy consideration. Both, of course, lead to the same
conclusions.

Let the load parameter 8 be fixed at 80 and consider small changes in the crack lengths.
Since K; = Ki(h to h2;80), the corresponding changes in the stress intensity factors are given by

dK aK2 aK2
2 = ah

l
dh l + ah

2
dh2, (2.6)

where the partial derivatives are calculated for 8 =80, at the equilibrium state hI =h2 =h,
where K1 =K2=Kc• Hence, if, for example, dK1 is positive, then crack 1 will grow to a larger
length (dh l > 0) in such a manner that K 1 remains at the critical value Kc• On the other hand, if
dK1 is negative, then K 1 drops below its critical value Kc and therefore crack I ceases to grow
(dh l = 0).

Hence, the admissible changes in the crack lengths in eqns (2.6) must comply with the
following conditions:

dhi ~ 0 for 0 < K; :S Kc•

In the sequel we shall prove that at the equilibrium state (2.5), we must have

aK1 aK2
ah2= ah

l
< 0 always.

(2.7)

(2.8)

With constraints (2.7) and (2.8) it can be immediately concluded from (2.6) that the
equilibrium state (2.5) is stable if and only if

(2.9)

and that it is unstable if and only if

(2.10)

where the equality sign defines the critical state.
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Conditions (2.9) are sufficient for stability because, in view of (2.7) and (2.8), for any
admissible change dh; ~ 0, we have dK;:5 0, and therefore neither crack can grow spon­
taneously. These conditions are also necessary because, if they are violated, then one crack
(say crack I) would stop growing (dh. = 0), and the other crack grow spontaneously (dh2 > 0).
As is seen from eqns (2.6), in this case we will have dK. = (aK./ah2 ) dh 2 < 0 because of (2.8),
and dK2 =(aK2/ah 2)dh2 >0. At the critical state aK2/ah 2 =0, and we obtain dK.<O and
dK2 = 0, so that dh. = 0 while dh2 > 0 is undefined. This means the existence of an "adjacent
equilibrium state".

Post-critical response
Assume that initially the two cracks are equal and that they grow equally with increasing l)

in a stable manner, i.e. conditions (2.9) prevail. Suppose that, for l) = l)e and h. =h2 = he
conditions (2.9) cease to hold. For l) > l)e> one crack, say crack I, stops growing, remaining at
the value ht = he thereafter, while the other crack continues to grow (possibly at a faster rate)
(see Fig. 4). For an increase in l), we therefore havet

dK =aK·dh +aK·d~<O dh 0
I ah

2
2 al) U , 1 =

dK2 =aK2 dh 2+aK2 dl) =O.
ah2 al) (2.11)

In this manner, K. continues to decrease. The results are schematically shown in Fig. 4. In this
figure, Pc corresponds to the critical state at which crack 1 stops growing. On branch pcp..
ht = he> K. < Ke and K2 = Ke. The states corresponding to this branch are stable as long as
aK2/ah2 remains negative; note that, although this quantity is zero at point Pc, in general it will
be negative at points corresponding to hI = he, but h2 > he. It may happen that at a certain point
p .. K 1 reduces to zero. This then marks a second critical state. Since the stress intensity factor
cannot be negative, then crack 1 may begin to close as l) is increased and as crack 2 extends.
This closure is, in general, a dynamic process. What happens (as illustrated in Section 4) is that
crack I actually snaps closed, while crack 2 attains a finitely longer length, h~, in Fig. 4. On
path PIP*, Kt remains zero.

The detailed crack closure process will depend on the nature of the temperature profile. For
the examples considered in Section 4, we have been able to prove that when the closure begins,
the corresponding crack snaps closed completely. However, it may be possible that for some
other examples there would be a partial closure of certain cracks.

From the energy consideration it will be shown below that

(2.12)

hz
h~ p'

P,

{hi =h e • K , < K e • K z = K e}

he --------- I Pc
I
I

" I,<:,'" ,,'+- I

"f:o;" ,,*"'" :
'+-' :

~ .J_ h,

he

Fig. 4.

tThe fact that dK I < 0 in this regime is a numerical result (see Section 4).
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Hence when K I = 0 and K2 = Ke (state PI), we must have

which marks the second critical state.

415

(2.13)

Energy method
Consider the unit cell of Fig. 2(b) at the equilibrium state (2.5). Let the total elastic energy

stored because of nonuniform cooling of the half-plane in the strip of unit thickness (perpendi­
cular to the plane of the paper in Fig. 2b) and of width 2b be denoted by 'l. This energy will be
a function of hand 8 (among other parameters), i.e. 'l = 'l(h, 8). The total surface energy, on
the other hand, is 5 = 2oy(h l +h2 ) = 4oyh, where oy is the surface energy density. Both 'l and 5
are positive.

Still assuming hi = h2 = h, consider for a fixed 8 an infinitesimal extension of both cracks by
an amount I1h. The surface energy then increases by 115 = 4oyl1h > O. Since no other source of
energy exists (no applied loads), the total elastic energy 'l must decrease by the amount
11 'l = (a'll iJh )l1h < O. Thus the energy release rate for the crack extension is - a'llah > O.

It is convenient to define 'l = - U, and to consider the total potential energy of the system
of cracks 1 and 2 with lengths hI and h2 in Fig. 2(b), as

n=- U+5. (2.14)

In this equation - U and 5 are both positive functions of hI and h2• In accordance with the
Griffith crack criterion, the equilibrium state is defined by the vanishing of the first variation of
n, which leads to the equilibrium equations

au
OJ == ah

j
= 2oy, i = 1,2, (2.15)

where OJ is the energy release rate and relates to the stress intensity factor as follows:

(2.16)

Since U is a symmetric function of hI and h2, equilibrium equations (2.15) require that
hI =h2 =h at equilibrium.

From (2.15) it is clear that

(2.17)

(2.18)

and hence the use of (2.16) in this identity yields (2.12) for unequal cracks.
To study the stability of the equilibrium state (2.5), we consider the second variation of n,

for admissible variations of the crack lengths hI and h2• The equilibrium state is stable if the
second variation is positive definite, it is critical if the second variation is zero, and it is unstable
if the second variation is negative definite. Since the closing of a crack does not result in the
retrieval of the corresponding surface energy, admissible variation in hi must satisfy con­
straintst (2.7) with dh j = 0 when 0 < K i < Ke, and for dh i < 0 we must have K j = O.

The stability conditions are now given by

2n a2u {>O stable
a
h

h dh i dhj =- -hh dh i dh j = =0 critical, for all dh i ~ 0,
a iiJ j a ja j <0 unstable

where repeated indices i and j are summed.

tNote that without these essential restrictions. condition (2.9) will not be sufficient for stability. The validity of our
results therefore hinges on this fact.
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Assume without a loss in generality that dh2 > 0, and set

Z~O. (2.19)

Then stability conditions (2.18) can be rewritten as

KKK {> 0 stable.
F=-{K, iJ hi z2+2K2iJ h2z+K2iJ h2} =0 critical, for all z~O.

iJ I' iJ I iJ 2 <0 unstable.
(2.20)

In view of (2.8) and (2.19), for K1 =K2 =Kc > 0, F is strictly positive if and only if (2.9) is
satisfied. Moreover, F ceases to be positive, for some z, if (2.10) is satisfied.

Consider now the case when 0< K1< Kc, dh l =0 (z =0), and K2 =Kc ; branch PcPl of Fig. 4.
Again the corresponding states will be stable as long as iJK2/ iJh2 < O. Figure 5 shows F for
different conditions. In this figure we have used the following notation:

(2.21)

so that the necessary and sufficient condition for stability of equilibrium state (2.5) now is
a = ." > 0; note that in view of (2.8),13 > 0 always. In Fig. 5, we have sketched F as a function
of z for a > 0 (stable state), a = 0 (critical state), and a < 0 (unstable state). It is seen that when
a > 0, F is strictly positive for z ~ 0, but it may attain negative values for inadmissible values
of z, i.e. for z < O. On the other hand, when a < 0, F takes on negative values for positive
values of z. For a =0, F =0 at z =0, and F> 0 for z > O.

Note that if (2.20) were physically meaningful for negative values of z, or if 13 could take on
negative values, then in addition to (2.9), one must also require that 132

- a2 < 0 for stability;
this is the well-known classical result. In the present case, however, the sign or the value of the
quantity 132

- a 2 has no relation whatsoever to the question of stability. In Fig. 5, curves 1, 2 and
3 are plots of F for stable regimes because for these curves a> O. However, for curve 1,
13 2

- a 2 < 0, whereas for all other curves between curves 2 and 4, 13 2
- a 2 > 0; for curve 2,

132
- a 2 =O.
Figure 6 shows the corresponding states in terms of the values of the stress intensity factors

K I and K2• In this figure the solid curves are the stress intensity factor for constant values of 8,
and for hi = h2• The fundamental equilibrium path corresponds to the intersection of these
curves with the horizontal line K. =K2 =Kc• Suppose we consider the state A on the
equilibrium path. Since a > 0 at A, this state is stable. As 8 is increased, this point moves to the
left parallel to the horizontal axis, and the corresponding equilibrium states are stable, as long as
the variation of K, with respect to h.. or K2 with respect to h2, for the corresponding constant
value of 8, is negative, i.e. as long as a> O. At point B, a = 0, and therefore iJK2/iJh2 = O. This

Slable

Stable

Stable

Critical

I
/

/ I
/ I

/ /

\
\
\
\ \ \

\ \ ' "
\ \ " '" ~/I\', '---"" "'~/
',' -1 ""3

____-->O-::,...:_::O'_......._ ;;..,.,...c;....-+----:~--r---"o..,.,-- Z,
" {a < 0, IJI - a l >o} Unstable

Fig. 5. Second variation of potential energy as a function of z = dh,ldh2•
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point corresponds to the critical state. A snap-through can then occur which results in ·a -new
crack length for crack 2 given by the abscissa of point C. The stress intensity factor at crack 1
first decreases, falling below Kc• which means that crack 1 stops growing. If and when the
stress intensity at crack 1 reaches zero value, before state C is attained, then crack 1 begins to
close.

Additional comments
The interaction between the two cracks as they grow may be better understood if one

replaces the effect of nonuniform cooling, by equivalent surface tractions and body forces.
Except for an insignificant equivalent body force, as far as the values Of the stress intensity
factors are concerned the effect of cooling can be represented by equivalent distributed norrtll11
tractions on the faces of the crack, as shown in Fig. 7(a); see also eqns (3.1) of Section 3. First,
note, e.g. for temperature profile (2.1), that when /; is very small, the equivalent normal
tractions 'Ta at x =0, b, decrease very quickly with respect to increasing y. On the other hand,
this decrease becomes much more gradual as /; increases.

Consider now a small increase in h2 for fixed values of 8 and hI; see Fig. 7(b). The
corresponding compressive forces on the faces of crack 2 increase by the amount aF, which
tend to decrease the tensile stress 'Ta , at the vicinity of crack I, i.e. aKdah2 must be negative,
as stated before; see eqn (2.8).

Consider now the change in the stress field around crack 2, when /; and hi are held fixed,
and h2 is increased by a small amount. The corresponding increase, aF, in the total compressive
forces tends to increase the stress intensity factor K2• On the other hand, if aF were zero,-the
increase in h2 would decrease K2• When /; is small, then aF will be small, and hence the
decrease in K2 because of the increase in h2 is larger than the corresponding increase in K2

because of the addition of the compressive forces aF. Hence, for suitably small values of 8, we
must have aK21ah2 < O. As 8 increases, aF becomes more dominant At a critical value 8c of 8,
the two effects cancel each other, and we have the critical condition aK2/ah 2 = O.

Since the two cracks are completely symmetrical, they are initially equal and grow at an
equal rate, while aK2/ah2 = aKI/ah l < 0; i.e. stable growth. At the critical state, equal

(0) ( b)

Pi~ 7. Two interacting cracks subjected to equivalent surface tractions.
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continuous crack growth becomes impossible, since it leads to the state with iJK2/iJh 2 =
iJK.1 iJh I > O. At this state, one crack stops growing and the other crack grows faster with
increasing 8, while maintaining iJK2/iJh 2 < 0 and K. < Kc (nonsymmetric instability mode). Our
calculations for the examples in Section 4 have shown that this is the instability mode which
occurs in this case. Moreover, that not only does every other crack stop growing after the
critical state, but also that these cracks may actually snap closed after a second critical state is
reached.t Note that every other crack closes and the corresponding displacement jumps vanish;
there is no interpenetration of matter involved in this crack closure process.

3. ANALYSIS

We shall now formulate the plane problem of a half-space weakened by a system of equally
space parallel cracks with alternate lengths hi and h2• Let the spacing be b, and let the cracks be
opened by a nonuniform temperature distribution (cooling) given by either, eqn (2.1) or eqn
(2.2). The problem is equivalent to that in which the cracks are subject to the applied stresses
given by

{
1'XX(O, y) = - PTof(yI8),

1'xy(O, y) = 0, for 0 < y < hI> {

l'xx(b, y) = - pTof(yI8),

1'xy(b, y) = 0, for 0 < y < h2, (3.1)

where p= 3aE/(I- 2,,), a being the coefficient of thermal expansion, and where f(yI8)
represents the corresponding profile for temperature distribution.

Basic equations
A suitable representation for the components of stress for a vertical crack below an elastic

half-space is given by Keer and Chantaramungkorn[8]. This form can be modified to account
for an array of cracks with the stresses on the crack faces written as follows:

(3.2)

and

(3.3)

The functions DI(t), ~(t) represent dislocation densities and because of symmetry on x = 0, b,
the shear stress terms have been omitted; the kernel G is given by

G( )_ 2(y+t) (y+3t)[(y+t)2_ X2]+ 4ty(y+t)[(y+t)2_3x2]
t, x, Y - (y +d +x2 [(y +d +X2]2 [(y +d +X2]3

(y - t}[(y - t)2 +3x2
]

[(y - d+ x2f

Since G is an even function of x, the series in (3.2) and (3.3) may be written as

~ ~

~ G(t, 2nb, y) =G(t, 0, y) +2~ G(t, 2nb, y),
n=-~ n=1

~ ~

~ G(t, b +2nb, y) = 2~ G(t, (2n - I)b, y).
n=-oo II-I

(3.4)

(3.5)

(3.6)

Fortunately, the above series can be summed in closed form. Indeed, if we make use of the

tin terms of Fig. 7(b). this means that. at the second critical state, the "equiyalent" normal tractions on the longer crack
2 may now overcome the tractions which are keeping crack I open. A funher increase in crack 2 leads to larger equivalent
tractions which then overcome tractions on crack I; crack I closes as crack 2 extends (instability).
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formulae, see Gradshteyn and Ryzhik ([9], pp. 23, p. 36),

00 1 1L -:r:-:2 = ~2 [1I'X coth 1I'X - 1],
n=1 X +n x

we can write

2 i- G( 2 b )_t
2
-l-4ty +1I' th1l'(y+t) (y+3t)1I'2 h211'(y+t)f:1 t, n ,Y - (y + t)3 b co 2b 4b2 cosec 2b

tY1l'3 1I'(y +t) 1I'(y + t)
+ 2b3 cosech

2
2b coth ---":2:-:b~

+_1_ [1 _ 1I'(y - 0 coth 1I'(y - t)
(y - t) b 2b

1I'2(y - 02
2 1I'(y - t)]

+ 4b2 cosech 2b '

i- 11' 1I'(y+t) (y+3t)1I'2 211'(y+t)
21:1 G(t, (2n -1)b, y) = b tanh 2b + 4b 2 sech 2b

1I'3ty h211'(y+t)t h1l'(y+t)
-u;rsec 2b an 2b

_!!.. [4 t h 1I'(y - t) +1I'(y - t) h2 1I'(Y - 0]
4b an 2b b sec 2b .

Also, from (3.4) we have
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(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

The unknown functions D.. D2 in (3.2) and (3.3) are to be determined by the boundary
conditions (3,1). Setting t

(
h )1/2

DI(t) = h? ~ t2 CI(t), (
h )1/2

D,.(t) = hl ~ t2 Cit), (3.12)

io _ 11' (1I't 1I'Y)G(t, 0, Y) +2 f:, G(t, 2nb, y) - 2b G, 2b' 2b '

and making use of the relations (3.1)-(3.3), (3.5), (3.6) and (3.9)-(3.11), we get

(3.13)

(3.14)

tThese equations exhibit the singularities of DI(t), ~(t) at the crack ends; note that D,(t) and D,(t) do not have
singularities at t =O.
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where Oh O2 are given by
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Ol(t, y) = _1_+ 2 coth (y + t) - (y + 3t) cosech2 (y + t) + 4ty cosech2 (y + t) coth (y + t)
t-y

+ _1_ [1 - 2(y - t) coth (y - t) + (y - t)2 cosech2(y - t)), (3.17)
y-t

02(t, y) = 4t + 2 tanh (y + t) - (y + 3t) tanh2 (y + t) - 4ty tanh (y + tHl- tanh2 (y + t)}

- 2 tanh (y - t) +(y - t) tanh2(y - t). (3.18)

We note that, except for the first term in Gh both of the functions 0 1 and Gz are bounded in the
rectangles of their definitions. Since Dh Dz are proportional to the stresses on the lines of the
cracks, the new unknown functions in the integral eqns (3.15) and (3.16) are also bounded
functions on the intervals of their definitions.

Let kh k2 denotet the stress intensity factors at the crack tips (0, hd and (b, h2), respec­
tively, then using (3.2), (3.5), (3.12), (3.13) and (3.17) we have

or

Similarly, using (3.3), (3.6), (3.12), (3.14) and (3.18), we can show that

(3.21)

Numerical method
To solve integral equations (3.15) and (3.16) numerically, we first normalize the intervals

(0, hd and (0, h2) by defining

S=t/hh X ""-y/h l for O<t, y<hh
s =t/hz, x =y/h2 for 0< t, Y< h2,

and by setting

We can now write singular integral equations (3.15) and (3.16) in the form

1Thli l
BI(s) 0 (1Th ls 1ThIX) d +1Thzil Bz(s) 0 (1Thzs 1Thzx) d

2b 0 (1- S2)172 I 2b' 2b s 2b 0 (1- s2)112 z 2b '2b s

= - PTo!(h ,x/8), 0 < x < I,

(3.22)

(3.23)

1Thlil BI(s) 0 (1Th IS 1ThzX)d + 1Thz t Bz(s) 0 (1Thzs 1ThzX)d
2b 0 (1 ~ S2)1I2 z2b '2b s 2b Jo (1- S2)1/2 1 2b' 2b s

=- PTo!(hzx/8), 0 < x < 1. (3.24)

A practical technique for solving (3.23) and (3.24) is obtained if we extend functions BI(s)

tAccording to the definition used in Section 2. k; =K j /v'(21T), i =1,2
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and B2(s) into the interval (- t, 0). An appropriate extension of this kind is the following even
continuation:

(3.25)

With the aid of (3.25) we can write (3.23) and (3.24) in the form

(3.26)

(3.27)

We now use the integration formula corresponding to the weight function (1- s2fl/2, as
described by Erdogan, Gupta and Cook[lO), observe that s = 0 is a zero of O.(s, x) and
02(S, x), and we obtain

(3.28)

~ h ~
- ~Tof(h2XJ8) = ~ _7T_B (s.).!...!O (7Th IS; 7Th2X,) +~ _7T_B_1 ) 7Th20 (7Th2S/ 7Th2X,)

f-12n, + 1 I I 2b 2 2b '2b t-1 2n2 +1 Z\s/ 2B I 2b ' 2b '

1= 1,2, ... , n2, (3.29)

where

(
2; - t )

S; = cos 4nl +2 7T ,

(
2j -1 )

Sj = cos 4n2 +2 7T ,

Let

Xk = cos (2n~: J
x, = cos (2n~: J (3.30)

then eqns (3.28) and (3.29) may be written as

7Ta2
Y2'=T x"

(3.3 t)

"1 "2

~ (2n;+ I)B I(s;)H,(tli, Ylk; al) +~ (2n;+ 1) B2(sj )H2(t2j, Ylk; a2) = - ~Tof«(:4 Ylk ),

k = 1,2, ... , n.. (3.32)
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~ ~

~ (2n;+ l)B1(s;)H2(t1i, Y2': Ql)+~ (2n;+ I)B2(sj)H.(t2j, Y21: a2) = - tiT0I(:I1Y21) '

I = 1,2, ... , n2, (3.33)

where

H 1((, y; a) = ~a {4t +2coth (y + t) - (y +31) coth2 (y + t) - 4ty coth (y + t)[l - coth2 (y - t)]

- 2coth (y - t) +(y - t) coth2 (y - t)}, (3.34)

H 2((, y; a) =~a {4t +2tanh (y + t) - (y +3t) tanh2 (y +I) - 4ty tanh (y +t)[l- tanh2 (y - I)]

- 2 tanh (y - t) +(y - t) tanh2 (y - t)}, (3.35)

If we introduce

;=I, ... ,n..
1T 1

AI(s;) =----A- BI(sd,
2n. + I fJTo

1T I
A2(sj) =----A-B2(sj), j = 1, .• " n2,

2n2+ 1 f3To

then (3.32) and (3.33) become

(3.36)

n\ n2 2
k Al (S;)H.(tli' Ylt: a.>+~ A 2(sj)H2((2j, Ylt; a2) = t(-;\ Ylk),
I~I lEI 1T~

k = 1,2, ... ,'II> (3.37)

n\ n2 2
? AI(Sj)H2(tli, Y2'; al)+~ A 2(sj)H.(t2j, Y2'; a2) = f(-;\ Y21),
.=1 1=1 1T~

1= 1,2, ... ,"2. (3.38)

Let us define the nondimensional stress intensity factors NI and N2 at the crack tips
(0, hi) ~nd (b, h2), respectively, by

N =_k_,_ N =_k_2 - (339)
I tiTov'b' 2 /iTov'b' ,

Then using (3.20), (3.21), (3.22) and (3.36) we have

N, = (2n, + 1)~(~l)AI(I), (3.40)

We now employ the approximate polynomial solution, as described by Krenk[ll], and obtain

(3.41)

(3.42)

Hence, N.. N2 can be written in the form

(3.43)

(3.44)

where A,(O), A2(0) are obtained by interpolation.
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The derivatives of the stress intensity factors Nt, N2 with respect to a.. using (3.43) and
(3.44), are given by

aN N { "I . (2; - I ) a (_1)"( aAt(O)}
-at=-2' +y(2ad k(-1)'+Icosec 4 +2 1T -a A1(s;)+-2---a-'

at at ,=1 nl at a,

aN2 =. If') ){~ (_ l)j+1 (2 j - 1 )~ A ( .) + (-1)"2 aA2(0)}
a v ,_a2.£J cosec 4 + 2 1T a 2 s/ 2 a .at j=1 n2 al at

(3.45)

(3.46)

where (a/aat)A,(sj) and (a/aat)A2(Sj), (s;, sj';c 0) are found from (3.37) and (3.38) which may be
written as

(3.47)

(3.48)

The values of aA.(s;)/aa.. aA2(sj)/aat at Sj = Sj = 0 are obtained by interpolation. If we set

a
Lt(xt, xy) =ax Ht(xt, xy; x),

Z a
L3(xt,zY)=--a H2(xt,zy; x),x Z

then using (3.34) and (3.35) we arrive at

(3.49)

(3.50)

(3.51)

L.(t, y) = I{12t + 2 coth (y + t) - 4(y + 2t) coth2(y + t)

+2(l + IOty + 3t2)coth (y + t)[coth2(y + t)-1]

- 4ty(y + t)[coth2(y + t) - I] [3 coth2(y + t) - I] - 2 coth (y - t) + 4(y - t) coth2(y - t)

- 2(y - t)2 coth (y - t)[coth2(y - t) -In, (3.52)

L2(t, y) = I {12t + 2 tanh (y + t) - (y + 8t)tanh2(y + t) - 2t(5y + 3t)tanh (y + t)[l- tanh2(y + t)]

- 4t2y [1- tanh2(y + t)][l- 3 tanh2(y + t)] -2 tanh (y - t) + (y - 4t) tanh2(y - t)

- 2t(y - t) tanh (y - t)[l- tanh2(y - tH), (3.53)

L3(t, y) = I{- 3y tanh2 (y + t) - 2y(y + 5t) tanh (y + t)[l- tanh2(y + t)] - 4tl[1 - tanh2(y + t)l

x [1- 3 tanh2(y + t)] + 3y tanh2(y - t) + 2y(y - t) tanh (y - t)[l- tanh2(y - t))}. (3.54)

For the temperature profile given by (2.1), we use the definition of the error function, and
write the first term on the right-hand side of (3.47) as

SS Vol. t4, No. 6--8

a (2) 2 (2Y3 ) [(2V3 )2]aa. f 1T4 Ylk = - a.Y1T 1T4 Ytk exp - 1T4 Ytk . (3.55)
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In a similar manner, we obtain for temperature profile (2.2),

(3.56)

Making use of the relations (3.49) to (3.55) we can write eqns (3.47) and (3.48) in the form

(3.57)

ft,

= - ~ A,(Si)L2(tli, Y2/),,-I
(3.58)

for the temperature profile given by (2.2), the corresponding terms in eqns (3.57) must be
replaced by the expression (3.56). Since AI(s/) and A~sj) can be determined from eqns (3.37)
and (3.38), the right-hand sides of the above equations are known. Once (a/aadA,(s;) and
(a/aa.)A2(sj) are obtained by solving (3.57) and (3.58), the derivatives with respect to al of the
stress intensity factors N.. N2 are given by eqns (3.45) and (3.46).

Similarly, using (3.37) to (3.44), we can show that the derivatives of N.. N2 with respect to
a2 are given by

(3.59)

(3.60)

where (a/aa2)A I(s;) and (a/aa2)A2(sj) can be determined from the system of simultaneous
linear algebraic equations

ft2

- ~ A2(sj)L I(t2i> Yu), I = I, .. , ,n2.
f:'\

(3.62)

The values of aAI(Si)/aa2, aA2(sj)/aa2 at s, =Sj =0 are obtained by interpolation. The functions
H.. H2, L .. L 2, L 3 and their arguments in the above equations are given by the relations (3.30),
(3.31), (3.34)-(3.36) and (3.49)-(3.54).
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4. NUMERICAL RESULTS

In this section we shall illustrate our general results by means of specific numerical
examples. Both temperature profiles (2.1) and (2.2) will be used. These will serve to demon­
strate two modes of snap-through crack closure phenomena.

Example one
First we shall use temperature profile (2.2) with n =0.5, and set the dimensionless critical

stress intensity factor N c = 0.15; this choice is discussed later on in this section.
For a fixed value of Ii =Bib, we calculate dimensionless crack lengths, a. =a2, such that

N. = N2=Nc• Branch ABB' in Fig. 8. is obtained in this manner. This is the fundamental
equilibrium path in the a, a. = a2-space. Not all states on this branch are stable. For states
corresponding to the AB portion of this branch, aNdaal = aN21aa2 s 0, the equality sign
corresponding to the critical state B. Therefore, all states between A and B are stable, and all
states between Band B' are unstable, since for these aNdaa, = aN21aa2 > O. Correct to about
0.1%, at the critical state B, We have Ii =lie =4.586, and a. = a2 = ac = 3.883.

After point B, crack 1 ceases to grow, while crack 2 continues to extend, as Ii is increased.
This leads to the stable branch BB*, on which aN2Iaa2<0. Along this branch, N.. as well as
laN2Iaa.!, continue to decrease monotonically with increasing Ii. as shown in Fig. 9, attaining
zero at a =5.482, where a2 =4.900. At this point, the change in the stress intensity factors is
governed by

(4.1)

Now, if we consider an increment da > 0, and choose da2"" 0.86 dli, we will have dN2 "" 0, so
that N2 remains at the critical value, Nco On the other hand. for these choices,

154
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44 ~~-..L...----'---'----J'----:!=~.I:----1--...I-----'_-'-----:-:l:--.L..:<l'''''''''''_...1-----11,..--__
38 40 50 11.0 12.0 12.2 136 t4.0

°2
Fig. 8. Variations in crack lengths and crack spacing as functions of the load parameter l1 for temperature

profile eqn (2.2) with /I =0.5.
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and since dal cannot be positive (because N,=O<Ne ), we observe from (4.1), that dNI<O.
This means that da, must be negative, because N, must remain zero, and therefore crack 1
proceeds to close. Further calculations show that this process accelerates spontaneously
because, as a, decreases, the rate at which N I decreases becomes faster. Hence, crack 1 snaps
closed as crack 2 extends to a longer length. The crack spacing doubles after this.

Branch AIB I in Fig. 8 corresponds to the state in which every other crack is closed. Hence,
the state at point B* moves horizontally to state Bi on branch A.B•. This new state is stable.
The entire process then continues until point B I at which instability initiates again. After this
point, every other crack (the cracks are now spaced at distance 2b) stops growing, and we
obtain branch BIBi*. The state at Bi* is similar to that at B* discussed before. Hence, after
this state the crack spacing changes from 2b to 4b, as every other crack snaps closed. The
entire regime continues in such a manner that the crack spacing and the crack depth maintain a
somewhat equal order of magnitude.

We note that the stability conditions, aN,1aa, < 0 and aN21aa2 < 0, must not be violated for
stable states, as long as the corresponding stress intensity factors are at the critical value, i.e. as
long as the corresponding crack is active. Therefore, since on branch AB both cracks are
active, both of the above inequalities must prevail. On the stable branch BB*, on the other
hand, crack 1 is inactive, N, < Ne, and therefore aN,/aa, may be positive, while aN2/aa2 does
and must remain negative. Moreover, the quantity aN2/aal remains negative as long as N I is
positive, and it vanishes with vanishing N I ; actually, the curve corresponding to aN2/aa, is
tangent to the .:1-axis at the point where N I vanishes, see Fig. 9. This occurs at point B*, and at this
point aN,/aa2 is unrestricted; see eqn (4.2) below.

Example two
We shall now use the temperature profile given by (2.1), and again set Ne = 0.15. The results

are shown in Fig. 10. Branches AB and BB* have similar meanings to the corresponding ones
in Fig. 8. However, at point B* (.:1 = 3.835, a2 = 1.578) in Fig. 10 the only stable state which the
system can attain is point B! (.:1 =3.835, a2 =2.129) on branch A2B2which corresponds to the
crack spacing of 4b. This means that if only two interacting cracks are considered then, after the
state corresponding to B*, not only those cracks which have stopped growing would snap closed,
but also that every other of those cracks that had continued growing would snap closed: the crack
spacing quadruples after this state. The .entire process then continues.

We should carefully point out that the above result may be due to the fact that we have not
considered three interacting cracks, as shown in Fig. 11. It may happen that before state B* in
Fig. 10 is reached, crack 3 in Fig. 11 stops growing, after which state every third crack (namely
crack 2) would continu~ to grow. At this stage of the crack development, crack 1 would involve
both Modes I and II. We have not analyzed this possibility.t It presents a considerably more
difficult problem. However, we expect that eventually both cracks 1 and 3 would snap closed,
and that a point on branch B,A I would be attained. However, this is mere (educated)
speculation, and only analytical results can establish a reliable conclusion.

On the accuracy of the results. Lacking a rigorous error estimate, we have tried to check the
accuracy of our numerical results in three different ways: (1) We have applied the method to
problems with known solutions; (2) Since a collocation method is used, we have obtained the
same results using several significantly different numbers of collocation points; and (3) We have
used the identity

(4.2)

The first check is that for the single edge crack solved by Koiter[13], in which the value of
stress intensity factor is given exactly as 2N = 1.5861. Table 1 shows values for stress intensity
factors which we have obtained by our analysis for a uniform load and for different numbers of
collocation points. The results for forty points appear to differ by about 0.3% from the exact
value. Also shown in Table 1 are values for the stress intensity factors using two interpolation

t A complete theory of unstable growth of interacting cracks, involving Modes l, II and III. is given by Nemat­
Nasser [I2].
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Fig. 9. Variation in dimensionless stress intensity factor N, and in aNz/aa. as functions of A. on branch
BB* of Fig. 8.

Table I. Single edge crack

NllIIber of point. 2N (Eq. 3.43) 2N (IDterpolat1on)

40

60

80

100

1.58ll

1.5827

1.5835

1.5840

1.58i8

)..5832

1.5839

1.5844

points. These values were also tested for three and four interpolation points and the results are
the same. Thus, if an accurate value for stress intensity factor is desired it is not essential to use
eqns (3.43) and (3.44) since interpolation produces adequate results. This is not the case for the
derivatives of the stress intensity factors.

Another check was made by specializing the problem to an infinite array of edge cracks of
equal lengths. For this case the error function profile was used. The results are given in Table 2
for 4 = 1.5 and at = a2 = 1.3229. It can be seen from this table that while the stress intensity
factor is essentially unchanged the derivatives do change significantly with the number of
collocation points. One might infer that the error in the derivative is the same for different
crack configurations. However, the accuracy of the derivatives will also be seen to depend upon
the relative crack length as well as the crack lengths.
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Fig. 10. Variations in crack lengths and crack spacing as functions of the load parameter ~ for temperature
profile eqn (2.1 I.
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Fig. II. A unit cell with three unequal cracks: Crack I involves both Modes I and II.

Table 2. Infinite array of cracks (a I =a2 = 1.3229. ~ = 1.5)

Nlllllber af points Nl -Nz 3N 1/3az 3Nz/3az

30 0.1501 -0.2966 -0.4380
40 0.1500 -0.2984 -0.4338

50 0.1500 -0.3011 -0.4288
60 0.1500 -0.3016 -0.4299

70 0.1500 -0.3031 -0.4292

For equal cracks. when a. = a2 is less than 10.50 collocation points seem to give better than
three significant figure accuracy in the dimensionless stress intensity factors N, =N2• and in the
crack lengths a, = a2. In our calculations the critical points are established using 80 collocation
points for each crack. Thus the numerical results are accurate to at least four significant figures
for N. =N2and a, =a2.

The accuracy in the calculations of the derivatives. aNi/aaj, is considerably lower than that
for Ni and ai, and becomes worse as the cracks become more unequal. This feature is seen in
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Table 3. Error near critical point (al = 3.883. Nz= N< = 0.15,40 collocation points)

A "z 11\ 311\/3&\ 311\/3&1 3111/3&\ 3111/3&1 KnoP.

4.65 4.076946 0.10817 0.08457 -0.24798 -0.17813 -0.17690 0.00010

4.95 4.430745 0.05665 0.12901 -0.10210 -0.03788 -0.30976 0.00010

.5.25 4.701950 0.02163 0.12208 -0.02794 -0.0037.5 -0.31827 0.00004

* • • IN1 ~1/C!il2 - N2 CIIl2/ Cla1 1
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Table 3, where 40 collocation points were used and where a. =3.883, N 2 = Ne =0.15. Equation
(4.2) provides an excellent check for the consistency of the results when the cracks are unequal,
as long as N1 is positive. The error E =IN1 aNdaa2 - N2aN2/aall is given in Table 3 for three
cases and it appears to be consistent in magnitude.

It should be pointed out that the stability calculations require quantities that are not usually
calculated in fracture analysis, namely the derivatives of the stress intensity factors with
respect to crack lengths. Consequently, there is a requirement for higher accuracy than is
usually obtained by numerical techniques. The authors doubt that recent finite element work,
even that using special elements, will prove adequate for such analyses. In fact, considerable
effort is required to develop analytical tools to obtain these quantities with reasonable accuracy.

Minimum crack spacing. To estimate the initial crack spacing, we observe that before
cracking, the total strain energy per unit thickness, in a strip of length b, is given by (for
temperature profile eqn 2.1)

(4.3)

To simplify the calculation, we approximate the temperature profile t = T - To by a parabolic
curve t = To(1- y/8)2 which satisfies the boundary condition at y = 0, and together with its
gradient vanishes at y =8. Equation (4.3) then becomes

(4.4)

Let (J be the fraction of this strain energy which is used to generate new surfaces as the themal
cracks initially form. If h is the crack length, we must have

From this equation, we obtain

(J A2'T' 2b~ E
10 a J 0 u 1_ 2v = 2h-y. (4.5)

(4.6)

We now substitute from (4.6) into (3.32), note that ke =Keh/(21T) =[-yE/1T(1- V
2

)]I/2 and
13 =tiE/(1- 2v), and arrive at

[
88(1- 2v) ]1/2

Ne "'" 20 h1T(1 - v2) • (4.7)

It is interesting to note that this estimate does not depend on the temperature change To and on
the elastic modulus E. Note, however, that it is the constant value K e, and not Ne, which the
stress intensity factor must attain at the crack tip as the crack grows. N e, therefore, will change
as the crack spacing changes, while K e remains constant (for the ideal brittle material considered
here).
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For a numerical value, set l) "" h and, with (J = (1/3). obtain Nc = 0.05. On the other hand, if
l) "" 3h, and (J = 1, we obtain Nc =0.15.

It should be pointed out that there is an upper value that Nc cannot exceed for a given
temperature profile. From the definition of Nc, namely Nc = Kc/[y'(27T)IiTobI/2

], for a given To,
this places another restriction on the minimum value that crack spacing b can attain. This
restriction corresponds to the question of stability. For example for the temperature profile
(2.1), and for 1:1 = 1, the maximum value for Nc that can be attained with aNtlaal =aN2/aa2 s, 0,
is Nc "" 0.19. If we require that Nc be larger than this number, we cannot have a stable regime.
Hence, for a given temperature profile and with 1:1 fixed. there is an absolute upper value that Nc

can possibly attain. However, this upper value is much larger than the upper value correspond­
ing to the stability requirement. For example, for temperature profile (2.1) and with 1:1 = 1 and
at = a2 =0.15, we will have Nt = N2=0.21, for which aNt/aat =aN2/aa2 =+OJ, which is
unstable; if such a statement can be achieved by imposing certain constraints, then when the
constraints are removed, some of the crack would snap closed, which means that the dimensionless
stress intensity factor would be reduced.
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